depth estimation of gravity anomalies using hopfield neural networks

Authors

علیرضا حاجیان

مربی، گروه فیزیک، دانشگاه آزاد اسلامی واحد نجف آباد، ایران وحید ابراهیم زاده اردستانی

دانشیار، گروه فیزیک زمین، مؤسسة ژئوفیزیک دانشگاه تهران و قطب علمی مهندسی نقشه برداری و مقابله با سوانح طبیعی، تهران، ایران کار لوکاس

استاد، دانشکده برق وکامپیوتر دانشگاه تهران وقطب علمی کنترل وپردازش هوشمند ،تهران،ایران

abstract

the method of artificial neural network is used as a suitable tool for intelligent interpretation of gravity data in this paper. we have designed a hopfield neural network to estimate the gravity source depth. the designed network was tested by both synthetic and real data. as real data, this artificial neural network was used to estimate the depth of a qanat (an underground channel) located at north entrance of the institute of geophysics and the result was very near to the real value of the depth.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Depth estimation of gravity anomalies by S-transform of analytic signal

The S-transform has widely been used in the analysis of non-stationary time series. A simple method to obtain depth estimates of gravity field sources is introduced in this study. We have developed a new method based on the spectral characteristics of downward continuation to estimate depth of structures. This calculation procedure is based on replacement of the Fourier transform with the S-Tra...

full text

Boundary Depth Information Using Hopfield Neural Network

Depth information is widely used for representation, reconstruction and modeling of 3D scene. Generally two kinds of methods can obtain the depth information. One is to use the distance cues from the depth camera, but the results heavily depend on the device, and the accuracy is degraded greatly when the distance from the object is increased. The other one uses the binocular cues from the match...

full text

depth estimation of salt domes using gravity data through general regression neural networks, case study: mors salt dome denmark

in this paper an intelligent method through general regression neural networks (grnn) is presented to estimate the depth of salt domes from gravity data. neural networks are as a good tool for automatic interpretation of geophysical data especially for depth estimation of gravity anomalies. the gravity signal is a nonlinear function of depth and density and the geometrical parameters of the bur...

full text

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

License Plate Recognition using Hopfield Neural Networks

Vehicle Number Plate Recognition system has gained wide popularly with the continuous increase in the number of vehicle related offences. Its research is becoming challenging and interesting day by day. VNPR is designed to help in recognition of number plates of vehicles .Number plate recognition is the term used to unique identify road vehicles without human intervention. VNPR system is a step...

full text

depth estimation of gravity anomalies by s-transform of analytic signal

the s-transform has widely been used in the analysis of non-stationary time series. a simple method to obtain depth estimates of gravity field sources is introduced in this study. we have developed a new method based on the spectral characteristics of downward continuation to estimate depth of structures. this calculation procedure is based on replacement of the fourier transform with the s-tra...

full text

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023